extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22xC12).1C6 = A4xDic6 | φ: C6/C1 → C6 ⊆ Aut C22xC12 | 72 | 6- | (C2^2xC12).1C6 | 288,918 |
(C22xC12).2C6 = A4xC3:C8 | φ: C6/C1 → C6 ⊆ Aut C22xC12 | 72 | 6 | (C2^2xC12).2C6 | 288,408 |
(C22xC12).3C6 = D4xC3.A4 | φ: C6/C1 → C6 ⊆ Aut C22xC12 | 36 | 6 | (C2^2xC12).3C6 | 288,344 |
(C22xC12).4C6 = Q8xC3.A4 | φ: C6/C1 → C6 ⊆ Aut C22xC12 | 72 | 6 | (C2^2xC12).4C6 | 288,346 |
(C22xC12).5C6 = C3xQ8xA4 | φ: C6/C1 → C6 ⊆ Aut C22xC12 | 72 | 6 | (C2^2xC12).5C6 | 288,982 |
(C22xC12).6C6 = C8xC3.A4 | φ: C6/C2 → C3 ⊆ Aut C22xC12 | 72 | 3 | (C2^2xC12).6C6 | 288,76 |
(C22xC12).7C6 = C2xC4xC3.A4 | φ: C6/C2 → C3 ⊆ Aut C22xC12 | 72 | | (C2^2xC12).7C6 | 288,343 |
(C22xC12).8C6 = A4xC24 | φ: C6/C2 → C3 ⊆ Aut C22xC12 | 72 | 3 | (C2^2xC12).8C6 | 288,637 |
(C22xC12).9C6 = C9xC2.C42 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 288 | | (C2^2xC12).9C6 | 288,45 |
(C22xC12).10C6 = C9xC22:C8 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).10C6 | 288,48 |
(C22xC12).11C6 = C22:C4xC18 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).11C6 | 288,165 |
(C22xC12).12C6 = C4:C4xC18 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 288 | | (C2^2xC12).12C6 | 288,166 |
(C22xC12).13C6 = D4xC36 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).13C6 | 288,168 |
(C22xC12).14C6 = C9xC22.D4 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).14C6 | 288,173 |
(C22xC12).15C6 = C3xC6.C42 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).15C6 | 288,265 |
(C22xC12).16C6 = C32xC2.C42 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 288 | | (C2^2xC12).16C6 | 288,313 |
(C22xC12).17C6 = C32xC22:C8 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).17C6 | 288,316 |
(C22xC12).18C6 = C6xDic3:C4 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).18C6 | 288,694 |
(C22xC12).19C6 = C3xC12.48D4 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).19C6 | 288,695 |
(C22xC12).20C6 = C6xC4:Dic3 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).20C6 | 288,696 |
(C22xC12).21C6 = C2xC6xDic6 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).21C6 | 288,988 |
(C22xC12).22C6 = C6xC4.Dic3 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).22C6 | 288,692 |
(C22xC12).23C6 = C3xC23.26D6 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).23C6 | 288,697 |
(C22xC12).24C6 = C3xC12.55D4 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 48 | | (C2^2xC12).24C6 | 288,264 |
(C22xC12).25C6 = C2xC6xC3:C8 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).25C6 | 288,691 |
(C22xC12).26C6 = Dic3xC2xC12 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 96 | | (C2^2xC12).26C6 | 288,693 |
(C22xC12).27C6 = C9xC42:C2 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).27C6 | 288,167 |
(C22xC12).28C6 = C9xC4:D4 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).28C6 | 288,171 |
(C22xC12).29C6 = C9xC22:Q8 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).29C6 | 288,172 |
(C22xC12).30C6 = M4(2)xC18 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).30C6 | 288,180 |
(C22xC12).31C6 = D4xC2xC18 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).31C6 | 288,368 |
(C22xC12).32C6 = Q8xC2xC18 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 288 | | (C2^2xC12).32C6 | 288,369 |
(C22xC12).33C6 = C4oD4xC18 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).33C6 | 288,370 |
(C22xC12).34C6 = C4:C4xC3xC6 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 288 | | (C2^2xC12).34C6 | 288,813 |
(C22xC12).35C6 = C32xC42:C2 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).35C6 | 288,814 |
(C22xC12).36C6 = C32xC22:Q8 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).36C6 | 288,819 |
(C22xC12).37C6 = M4(2)xC3xC6 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 144 | | (C2^2xC12).37C6 | 288,827 |
(C22xC12).38C6 = Q8xC62 | φ: C6/C3 → C2 ⊆ Aut C22xC12 | 288 | | (C2^2xC12).38C6 | 288,1020 |